Строение и функции глаза человека. Строение и функции органов зрения человека. Глазное яблоко и вспомогательный аппарат Особенности внешнего строения глаза человека

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему

Орган зрения является самым важным из всех органов чувств человека, ведь около 90% информации о внешнем мире человек получает через зрительный анализатор или зрительную систему. Основными функциями органа зрения являются центральное, периферическое, цветовое и бинокулярное зрение, а также светоощущение.

Человек видит не глазами, а посредством глаз, откуда информация передается через зрительный нерв в определенные области затылочных долей коры головного мозга, где формируется та картина внешнего мира, которую мы видим.

Строение зрительной системы

Зрительная система состоит из:

* Глазного яблока;

* Защитного и вспомогательного аппарата глазного яблока (веки, конъюнктива, слезный аппарат, глазодвигательные мышцы и фасции глазницы);

* Системы жизнеобеспечения органа зрения (кровоснабжение, выработка внутриглазной жидкости, регуляция гидро и гемодинамики);

* Проводящих путей – зрительного нерва, зрительного перекреста и зрительного тракта;

* Затылочных долей коры больших полушарий головного мозга.

Глазное яблоко

Глаз имеет форму сферы, поэтому к нему стала применяться аллегория яблока. Глазное яблоко – очень нежная структура, поэтому располагается в костном углублении черепа – глазнице, где частично укрыто от возможного повреждения.

Глаз человека имеет не совсем правильную шаровидную форму. У новорожденных его размеры равны (в среднем) по сагиттальной оси 1, 7 см, у взрослых людей 2, 5 см. Масса глазного яблока новорожденного находится в пределах до 3 г, взрослого человека - до 7-8 г.

Особенности строения глаз у детей

У новорожденных глазное яблоко относительно большое, но короткое. К 7-8 годам устанавливается окончательный размер глаз. Новорожденный имеет относительно большую и более плоскую, чем у взрослых, роговицу. При рождении форма хрусталика сферичная; в течение всей жизни он растет и становится более плоским. У новорожденных в строме радужки пигмента мало или совсем нет. Голубоватый цвет глазам придает просвечивающий задний пигментный эпителий. Когда пигмент начинает появляться в радужке, она приобретает свой собственный цвет.

Строение глазного яблока

Глаз располагается в глазнице и окружен мягкими тканями (жировая клетчатка, мышцы, нервы и пр.). Спереди он покрыт конъюнктивой и прикрыт веками.

Глазное яблоко состоит из трех оболочек (наружной, средней и внутренней) и содержимого (стекловидного тела, хрусталика, а также водянистой влаги передней и задней камер глаза).

Наружная, или фиброзная, оболочка глаза представлена плотной соединительной тканью. Она состоит из прозрачной роговицы в переднем отделе глаза и белого цвета непрозрачной склеры. Обладая эластическими свойствами, эти две оболочки образуют характерную форму глаза.

Функция фиброзной оболочки – проведение и преломление лучей света, а также защита содержимого глазного яблока от неблагоприятных внешних воздействий.

Роговица – прозрачная часть (1/5) фиброзной оболочки. Прозрачность роговицы объясняется уникальностью ее строения, в ней все клетки расположены в строгом оптическом порядке и в ней отсутствуют кровеносные сосуды.

Роговица богата нервными окончаниями, поэтому она очень чувствительна. Воздействие неблагоприятных внешних факторов на роговицу вызывает рефлекторное сжимание век, обеспечивая защиту глазного яблока. Роговица не только пропускает, но и преломляет световые лучи, она имеет большую преломляющую силу.

Склера – непрозрачная часть фиброзной оболочки, которая имеет белый цвет. Ее толщина достигает 1 мм, а самая тонкая часть склеры расположена в месте выхода зрительного нерва. Склера состоит в основном из плотных волокон, которые придают ей прочность. К склере крепятся 6ть глазодвигательных мышц.

Функции склеры – защитная и формообразующая. Сквозь склеру проходят многочисленные нервы и сосуды.

Сосудистая оболочка , средний слой, содержит кровеносные сосуды, по которым кровь поступает для питания глаза. Прямо под роговицей сосудистая оболочка переходит в радужную оболочку, которая и определяет цвет глаз. В центре ее находится зрачок . Функция этой оболочки – ограничивать поступление света в глаз при его высокой яркости. Это достигается сужением зрачка при высокой освещенности и расширением – при низкой.

За радужной оболочкой расположен хрусталик , похожий на двояковыпуклую линзу, который улавливает свет, когда он проходит через зрачок и фокусирует его на сетчатке. Вокруг хрусталика сосудистая оболочка образует ресничное тело, в котором заложена цилиарная (ресничнвя) мышца, регулирующая кривизну хрусталика, что обеспечивает ясное и четкое видение разноудаленных предметов.

Когда эта мышца расслаблена, прикрепленный к цилиарному телу ресничный поясок натягивается и хрусталик уплощается. Его кривизна, а следовательно и преломляющая сила, минимальна. В таком состоянии глаз хорошо видит удаленные объекты.

Чтобы рассмотреть предметы, расположенные вблизи, цилиарная мышца сокращается, а напряжение ресничного пояска ослабевает, так что хрусталик становится более выпуклым, следовательно, более сильно преломляющим.

Это свойство хрусталика менять свою преломляющую силу луча, называется аккомодацией .

Внутренняя оболочка глаза представлена сетчаткой – высо- кодифференцированной нервной тканью. Сетчатка глаза – передний край мозга, исключительно сложное как по своей структуре, так и по функциям образование.

Что интересно, в процессе эмбрионального развития сетчатка глаза формируется из той же группы клеток, что головной и спинной мозг, поэтому справедливо утверждение, что поверхность сетчатки является продолжением мозга.

В сетчатке свет преобразуется в нервные импульсы, которые по нервным волокнам передаются в мозг. Там они анализируются, и человек воспринимает изображение.

Главным слоем сетчатки является тонкий слой светочувствительных клеток – фоторецепторов . Они бывают двух видов: отвечающие на слабый свет (палочки) и сильный (колбочки).

Палочек насчитывается около 130 миллионов, и они расположены по всей сетчатке, кроме самого центра. Благодаря им человек видит предметы на периферии поля зрения, в том числе при низкой освещенности.

Колбочек насчитывается около 7 миллионов. Они расположены главным образом в центральной зоне сетчатки, в так называемом желтом пятне . Сетчатка здесь максимально утончается, отсутствуют все слои, кроме слоя колбочек. Желтым пятном человек видит лучше всего: вся световая информация, попадающая на эту область сетчатки, передается наиболее полно и без искажений. В этой области возможно лишь дневное и цветное зрение.

Под воздействием световых лучей в фоторецепторах происходит фотохимическая реакция (распад зрительных пигментов), в результате которой выделяется энергия (электрический потенциал), несущая зрительную информацию. Эта энергия в виде нервного возбуждения передается в другие слои сетчатки – на клетки-биполяры, а затем на ганглиозные клетки. При этом, благодаря сложным соединениям этих клеток, происходит удаление случайных “помех” в изображении, усиливаются слабые контрасты, острее воспринимаются движущиеся предметы.

В конечном счете, вся зрительная информация в кодированном виде передается в виде импульсов по волокнам зрительного нерва в головной мозг, его высшую инстанцию – заднюю кору, где и происходит формирование зрительного образа.

Что интересно, лучи света, проходя сквозь хрусталик, преломляются и переворачиваются, из-за чего на сетчатке возникает перевернутое уменьшенное изображение предмета. Также картинка с сетчатки каждого глаза поступает в головной мозг не целиком, а словно разрезанная пополам. Однако мы видим мир нормально.

Следовательно, дело не столько в глазах, сколько в мозге. В сущности, глаз – это просто воспринимающий и передающий инструмент. Клетки мозга, получив перевернутое изображение, переворачивают его снова, создавая истинную картину окружающего мира.

Содержимое глазного яблока

Содержимое глазного яблока – стекловидное тело, хрусталик, а также водянистая влага передней и задней камер глаза.

Стекловидное тело по весу и объему составляет примерно 2/3 глазного яблока и более чем на 99% состоит из воды, в которой растворено небольшое количество белка, гиалуроновой кислоты и электролитов. Это прозрачное бессосудистое студенистое образование, заполняющее пространство внутри глаза.

Стекловидное тело достаточно прочно связано с цилиарным телом, капсулой хрусталика, а также с сетчаткой вблизи зубчатой линии и в области диска зрительного нерва. С возрастом связь с капсулой хрусталика ослабевает.

Вспомогательный аппарат глаза

К вспомогательному аппарату глаза относят глазодвигательные мышцы, слезные органы, а также веки и конъюнктиву.

Глазодвигательные мышцы

Глазодвигательные мышцы обеспечивают подвижность глазного яблока. Их шесть: четыре прямых и две косых.

Прямые мышцы (верхняя, нижняя, наружная и внутренняя) начинаются от сухожильного кольца, расположенного у вершины орбиты вокруг зрительного нерва, и прикрепляются к склере.

Верхняя косая мышца начинается от надкостницы глазницы сверху и кнутри от зрительного отверстия, и, направляясь несколько кзади и книзу, прикрепляется к склере.

Нижняя косая мышца начинается от медиальной стенки орбиты позади нижней глазничной щели и прикрепляется к склере.

Кровоснабжение глазодвигательных мышц осуществляется мышечными ветвями глазной артерии.

Наличие двух глаз позволяет сделать наше зрение стереоскопичным (то есть формировать трехмерное изображение).

Точная и слаженная работа мышц глаза позволяет нам видеть окружающий мир двумя глазами, т.е. бинокулярно. В случае нарушения функций мышц (например, при парезе или параличе одной из них) возникает двоение или же зрительная функция одного из глаз подавляется.

Также считается, что глазодвигательные мышцы участвуют в процессе подстройки глаза к процессу видения (аккомодации). Они сжимают или растягивают глазное яблоко так, чтобы лучи, поступающие от обозреваемых объектов, будь то вдали или вблизи, могли попасть точно на сетчатку. При этом хрусталик обеспечивает более тонкую настройку.

Кровоснабжение глаза

Мозговая ткань, осуществляющая проведение нервных импульсов от сетчатки до зрительной коры, а также зрительная кора, в норме почти повсеместно имеют хорошее обеспечение артериальной кровью. В кровоснабжении этих мозговых структур участвуют несколько крупных артерий, входящих в состав каротидных и вертебрально-базилярной сосудистых систем.

Артериальное кровоснабжение головного мозга и зрительного анализатора осуществляется из трех основных источников - правой и левой внутренней и наружной сонных артерий и непарной базилярной артерии. Последняя образуется в результате слияния правой и левой позвоночных артерий, расположенных в поперечных отростках шейных позвонков.

Почти вся зрительная кора и отчасти кора прилежащих к ней теменной и височной долей, а также затылочные, среднемозговые и мостовые глазодвигательные центры снабжаемых кровью за счет вертебро-базилярного бассейна (вертебра – в переводе с латинского – позвонок).

В связи с этим нарушения кровообращения в вертебрально-базилярной системе может стать причиной нарушения функций как зрительной, так и глазодвигательной систем.

Вертебробазилярная недостаточность, или синдром позвоночной артерии, – это состояние, при котором снижается кровоток в позвоночных и базилярной артериях. Причиной этих нарушений могут быть сдавливание, повышение тонуса позвоночной артерии, в т.ч. в следствие сдавливания костной тканью (остеофиты, грыжа межпозвоночного диска, подвывих шейных позвонков и др.).

Как видите, наши глаза – это исключительно сложный и удивительный дар природы. Когда все отделы зрительного анализатора работают гармонично и без помех, окружающий нас мир мы видим ясно.

Относитесь к своим глазам бережно и внимательно!

Зрение даёт человеку подробное изображение окружающей среды и позволяет ориентироваться и действовать в ней. Органом зрения является глаз. В глазу происходит превращение энергии света в энергию нервного импульса.

Глаз построен по камерному типу. Он имеет форму шара, который иногда называется глазным яблоком.

Оболочки глаза

Плотная волокнистая оболочка, которая, как мешок, содержит в себе все внутренние элементы, называется склерой. Спереди склера имеет прозрачный участок, который называется роговицей.

Рис. 1. Строение глаза.

Под склерой расположена сосудистая оболочка. Она содержит кровеносные сосуды, питающие глаз. В передней части глаза сосудистая оболочка переходит в радужную, которая посередине имеет отверстие с меняющимся диаметром - зрачок.

Третья, внутренняя оболочка называется сетчаткой, в ней находятся рецепторные клетки.

ТОП-3 статьи которые читают вместе с этой

Оптический аппарат

К оптическому аппарату глаза относятся все прозрачные элементы:

  • роговица;
  • жидкость передней камеры;
  • хрусталик;
  • стекловидное тело.

Хрусталик делит глаз на переднюю и заднюю камеры. Он имеет форму двояковыпуклой линзы. По функции он и является линзой, которая может менять свою кривизну за счёт сокращения ресничных мышц.

видеть одновременно близкие и далёкие предметы невозможно. При рассматривании близких предметов хрусталик становится выпуклым, а далёких - более плоским.

Рис. 2. Внешний вид глаза.

Снаружи глаз периодически закрывается двумя веками, которые смачивают роговицу слезой, выделяемой слёзной железой.

Рецепторный аппарат

После прохождения стекловидного тела свет попадает на сетчатку. Она состоит из нескольких слоёв клеток.

Рис. 3. Слои сетчатки.

В сетчатке находятся палочки и колбочки - 2 типа фоторецепторов.

Палочки:

  • воспринимают сумеречный свет;
  • более многочисленны;
  • дают ночное, чёрно- белое зрение.

Колбочки:

  • активны при дневном свете;
  • менее многочисленны;
  • дают дневное, цветное зрение.

В соседних слоях сетчатки расположены нейроны, которые воспринимают нервный импульс от рецепторов. Отростки нейронов сетчатки образуют зрительный нерв, передающий импульсы в мозг.

Мы смотрим двумя глазами, но получаем одно изображение потому, что задействуем идентичные участки сетчатки обоих глаз. Если пальцем сместить глазное яблоко, изображение сразу раздваивается.

Таблица «Строение и функции глаза»

Элемент

Строение

Функция

Роговица

Прозрачная тонкая оболочка

Преломление лучей света

Хрусталик

Форма линзы, эластичный

Фокусирует лучи света

Ресничная мышца

Мышечные волокна вокруг хрусталика

Изменение кривизны хрусталика

Стекловидное тело

Прозрачное студенистое вещество

Поддерживает внутриглазное давление, проводит свет

Плотная, белая волокнистая ткань

Создаёт форму глаза

Сосудистая оболочка

Сеть кровеносных сосудов

Питание глаза

Сетчатка

Несколько слоёв нейронов и слой фоторецепторов

Восприятие светового сигнала и превращение его в нервный импульс

Формирование изображения

Глаз нередко сравнивают с фотоаппаратом, т. к. в нём на чувствительном слое (сетчатке) получается перевёрнутое и уменьшенное изображение. Дети в первые месяцы жизни путают верх и низ предметов, но потом их мозг научается «переворачивать» картинку.

Что мы узнали?

Мы кратко рассмотрели строение глаза и функции его частей. Сетчатка глаза содержит фоторецепторы - периферическую часть зрительного анализатора. В рецепторных клетках энергия света превращается в электрическую энергию нервного импульса. Из отростков нейронов сетчатки формируется зрительный нерв. Оптический аппарат пропускает и преломляет лучи света, проецируя изображение на сетчатке.

Тест по теме

Оценка доклада

Средняя оценка: 4 . Всего получено оценок: 605.


Органы зрения рыб устроены в основном так же, как у других позвоночных. Сходен с остальными позвоночными у них и механизм восприятия зрительных ощущений: свет проходит в глаз через прозрачную роговицу, далее зрачок – отверстие в радужной оболочке – пропускает его на хрусталик, а хрусталик передает фокусирует свет на внутреннюю стенку глаза сетчатку, где и происходит его непосредственное восприятие. Сетчатка состоит из светочувствительных (фоторецепторные), нервных, а также опорных клеток.

Светочувствительные клетки располагаются со стороны пигментной оболочки. В их отростках, имеющих форму палочек и колбочек, имеется светочувствительный пигмент. Количество этих фоторецепторных клеток очень велико – на 1 мм 2 сетчатки у карпа их насчитывается 50 тыс. (у кальмара – 162 тыс., паука – 16 тыс., человека – 400 тыс., совы – 680 тыс.). Посредством сложной системы контактов конечных разветвлений чувствующих клеток и дендритов нервных клеток световые раздражения поступают в зрительный нерв.

Колбочки при ярком свете воспринимают детали предметов и цвет. Палочки воспринимают слабый свет, но детального изображения создать не могут.

Положение и взаимодействие клеток пигментной оболочки, палочек и колбочек меняются в зависимости от освещенности. На свету пигментные клетки расширяются и прикрывают находящиеся около них палочки; колбочки подтягиваются к ядрам клеток и таким образом передвигаются к свету. В темноте к ядрам подтягиваются палочки (и оказываются ближе к поверхности); колбочки приближаются к пигментному слою, а сократившиеся в темноте пигментные клетки прикрывают их.

Количество рецепторов разного рода зависит от образа жизни рыб. У дневных рыб в сетчатке превалируют колбочки, у сумеречных и ночных – палочки: у налима палочек в 14 раз больше, чем у щуки. У глубоководных рыб, живущих в темноте глубин, колбочек нет, а палочки становятся больше и количество их резко увеличивается – до 25 млн/мм 2 сетчатки; вероятность улавливания даже слабого света возрастает. Большая часть рыб различает цвета, что подтверждается возможностью выработки у них условных рефлексов на определённый цвет – синий, зеленый, красный, жёлтый, голубой.

Некоторые отступления от общей схемы строения глаза рыбы связаны с особенностями жизни в воде. Глаз рыбы эллипсовидный. В числе других он имеет серебристую оболочку (между сосудистой и белковой), богатую кристалликами гуанина, которая придает глазу зеленовато-золотистый блеск.

Роговица почти плоская (а не выпуклая), хрусталик шаровидный (а не двояковыпуклый) – это расширяет поле зрения. Отверстие в радужной оболочке – зрачок – может изменять диаметр только в небольших пределах. Век у рыб, как правило, нет. Лишь акулы имеют мигательную перепонку, закрывающую глаз как занавеска, и некоторые сельди и кефали – жировое веко – прозрачную пленку, закрывающую часть глаза.

Расположение глаз по бокам головы (у большинства видов) является причиной того, что рыбы обладают в основном монокулярным зрением, а способность к бинокулярному зрению весьма ограничена. Шаровидность хрусталика и перемещение его вперед к роговице обеспечивает широту поля зрения: свет в глаз попадает со всех сторон. Угол зрения по вертикали составляет 150°, по горизонтали– 168–170°. Но вместе с тем шаровидность хрусталика обусловливает близорукость рыб. Дальность их зрения ограничена и колеблется в связи с мутностью воды от нескольких сантиметров до нескольких десятков метров.

Видение на дальние расстояния становится возможным благодаря тому, что хрусталик может быть оттянут специальной мышцей–серповидным отростком, идущим от сосудистой оболочки дна глазного бокала.

При помощи зрения рыбы ориентируются и относительно предметов, находящихся на земле. Улучшение зрения в темноте достигается наличием отражательного слоя (тапетум) – кристалликов гуанина, подстилаемых пигментом. Этот слой не пропускает свет к лежащим позади сетчатки тканям, а отражает его и возвращает вторично на сетчатку. Так увеличивается возможность рецепторов использовать свет, попавший в глаз.

В связи с условиями обитания глаза рыб могут сильно видоизменяться. У пещерных или абиссальных (глубоководных) форм глаза могут редуцироваться и даже исчезать. Некоторые же глубоководные рыбы, наоборот, имеют огромные глаза, позволяющие улавливать совсем слабые следы света, или телескопические глаза, собирающие линзы которых рыба может поставить параллельно и обрести бинокулярное зрение. Глаза некоторых угрей и личинок ряда тропических рыб вынесены вперед на длинных выростах (стебельчатые глаза).

Необычна модификация глаз у четырехглазки из Центральной и Южной Америки. Ее глаза помещаются на верху головы, каждый из них разделен перегородкой на две самостоятельные части: верхней рыба видит в воздухе, нижней– в воде. В воздушной среде могут функционировать глаза рыб, выползающих на берег или деревья.

Роль зрения как источника информации из внешнего мира для большинства рыб очень велика: при ориентации во время движения, при отыскивании и захвате пищи, при сохранении стаи, в нерестовый период (восприятие оборонительных и агрессивных поз и движений самцами-соперниками, а между особями разных полов – брачного наряда и нерестового “церемониала”), в отношениях жертва –хищник и т. д.

Способность рыб воспринимать свет издавна использовалась в рыболовстве (лов рыбы на свет факела, костра и т. д.).

Известно, что рыбы разных видов неодинаково реагируют на свет разной интенсивности и разной длины волны, т. е. разного цвета. Так, яркий искусственный свет привлекает одних рыб (каспийская килька, сайра, ставрида, скумбрия и др.) и отпугивает других (кефаль, минога, угорь и т. д.). Так же избирательно относятся разные виды к разным цветам и разным источникам света – надводным и подводным. Все это положено в основу организации промышленного лова рыбы на электросвет (так ловят кильку, сайру и других рыб).



Глазное яблоко состоит из трех оболочек: наружной, средней и внутренней. Наружная, или фиброзная, оболочка образована из плотной соединительной ткани – роговицы (спереди) и непрозрачной склеры, или белочной оболочки (сзади). Средняя (сосудистая) оболочка содержит кровеносные сосуды и состоит из трех отделов:

1) переднего отдела (радужной оболочки, или радужки). Радужная оболочка содержит гладкие мышечные волокна, составляющие две мышцы: круговую, суживающую зрачок, находящийся почти в центре радужной оболочки, и радиальную, расширяющую зрачок. Ближе к передней поверхности радужки находится пигмент, определяющий цвет глаза и непрозрачность этой оболочки. Радужная оболочка прилегает своей задней поверхностью к хрусталику;

2) среднего отдела (ресничного тела). Ресничное тело расположено в месте перехода склеры в роговицу и имеет до 70 ресничных радиальных отростков. Внутри ресничного тела находится ресничная, или цилиарная, мышца, состоящая из гладких мышечных волокон. Ресничная мышца ресничными связками прикреплена к сухожильному кольцу и сумке хрусталика;

3) заднего отдела (собственно сосудистой оболочки).

Наиболее сложное строение имеет внутренняя оболочка (сетчатка). Основными рецепторами сетчатки являются палочки и колбочки. В сетчатке человека насчитывается около 130 млн палочек и около 7 млн колбочек. У каждой палочки и колбочки два членика – наружный и внутренний, у колбочки наружный членик короче. В наружных члениках палочек содержится зрительный пурпур, или родопсин (вещество пурпурного цвета), в наружных члениках колбочек – йодопсин (фиолетового цвета). Внутренние членики палочек и колбочек соединены с нейронами, имеющими два отростка (биполярными клетками), которые контактируют с ганглиозными нейронами, входящими своими волокнами в состав зрительного нерва. Каждый зрительный нерв содержит около 1 млн нервных волокон.

Распределение палочек и колбочек в сетчатке имеет следующий порядок: в середине сетчатки имеется центральная ямка (желтое пятно) диаметром в 1 мм, в ней находятся только колбочки, ближе к центральной ямке располагаются колбочки и палочки, а на периферии сетчатки – только палочки. В центральной ямке каждая колбочка через биполярную клетку соединена с одним нейроном, сбоку от нее несколько колбочек также соединяются с одним нейроном. Палочки в отличие от колбочек соединяются с одной биполярной клеткой по нескольку штук (около 200). Благодаря такому строению в центральной ямке обеспечивается наибольшая острота зрения. На расстоянии примерно 4 мм кнутри от центральной ямки находится сосок зрительного нерва (слепое пятно), в центре соска расположены центральная артерия и центральная вена сетчатки.

Между задней поверхностью роговой оболочки и передней поверхностью радужной оболочки и частично хрусталика находится передняя камера глаза. Между задней поверхностью радужной оболочки, передней поверхностью ресничной связки и передней поверхностью хрусталика расположена задняя камера глаза. Обе камеры заполнены прозрачной водянистой влагой. Все пространство между хрусталиком и сетчаткой занято прозрачным стекловидным телом.

Светопреломление в глазу. К светопреломляющим средам глаза относятся: роговица, водянистая влага передней камеры глаза, хрусталик и стекловидное тело. Во многом ясность зрения зависит от прозрачности этих сред, однако преломляющая сила глаза почти полностью зависит от лучепреломления в роговице и хрусталике. Лучепреломление измеряется в диоптриях. Диоптрия – это величина, обратная фокусному расстоянию. Преломляющая сила роговицы постоянна и равна 43 дптр. Преломляющая сила хрусталика непостоянна и изменяется в широких пределах: при смотрении на ближайшем расстоянии – 33 дптр, вдаль – 19 дптр. Преломляющая сила всей оптической системы глаза: при смотрении вдаль – 58 дптр, на ближнее расстояние – 70 дптр.

Параллельные световые лучи после преломления в роговице и хрусталике сходятся в одну точку в центральной ямке. Линия, проходящая через центры роговицы и хрусталика в центр желтого пятна, называется зрительной осью.

Аккомодация. Способность глаза четко различать предметы, находящиеся на разных расстояниях, называется аккомодацией. Явление аккомодации основано на рефлекторном сокращении или расслаблении ресничной, или цилиарной, мышцы, иннервируемой парасимпатическими волокнами глазодвигательного нерва. Сокращение и расслабление цилиарной мышцы изменяет кривизну хрусталика:

а) когда мышца сокращается, происходит расслабление ресничной связки, что вызывает увеличение светопреломления, потому что хрусталик становится более выпуклым. Такое сокращение ресничной мышцы, или напряжение зрения, происходит, когда предмет приближается к глазу, т. е. при рассматривании предмета, находящегося на максимально близком расстоянии;

б) когда мышца расслабляется, ресничные связки натягиваются, сумка хрусталика сдавливает его, кривизна хрусталика уменьшается и его лучепреломление снижается. Это происходит при отдалении предмета от глаза, т. е. при смотрении вдаль.

Сокращение ресничной мышцы начинается, когда предмет приближается на расстояние около 65 м, затем ее сокращения усиливаются и становятся отчетливыми при приближении предмета на расстояние 10 м. Далее, по мере приближения предмета сокращения мышцы все более усиливаются и наконец доходят до предела, при котором четкое видение становится невозможным. Минимальное расстояние от предмета до глаза, на котором он четко видим, называется ближайшей точкой ясного видения. У нормального глаза дальняя точка ясного видения находится в бесконечности.

Дальнозоркость и близорукость. Здоровый глаз при смотрении вдаль преломляет пучок параллельных лучей так, что они фокусируются в центральной ямке. При близорукости параллельные лучи собираются в фокус впереди центральной ямки, в нее попадают расходящиеся лучи и потому изображение предмета расплывается. Причинами близорукости могут быть напряжение ресничной мышцы при аккомодации на близкое расстояние или слишком длинная продольная ось глаза.

При дальнозоркости (из-за короткой продольной оси) параллельные лучи фокусируются позади сетчатки, и в центральную ямку попадают сходящиеся лучи, что также вызывает нечеткость изображения.

Оба дефекта зрения можно корректировать. Близорукость исправляют двояковогнутые линзы, которые уменьшают лучепреломление и отодвигают фокус на сетчатку; дальнозоркость – двояковыпуклые линзы, увеличивающие лучепреломление и потому придвигающие фокус на сетчатку.

Располагается в глазнице (орбите). Стенки глазницы образованы лицевыми и черепными костями. Зрительный аппарат состоит из глазного яблока, зрительного нерва и ряда вспомогательных органов (мышцы, слезный аппарат, веки). Мышцы позволяют глазному яблоку перемещаться. Это пара косых мышц (верхняя и нижняя мышцы) и четыре прямые мышцы (верхняя, нижняя, внутренняя и наружная).

Глаз как орган

Орган зрения человека это сложная структура, которая включает в себя:

  • Периферический орган зрения (глазное яблоко с придатками);
  • Проводящие пути (зрительный нерв, зрительный тракт);
  • Подкорковые центры и высшие зрительные центры.

Периферический орган зрения (глаз) представляет собой парный орган, устройство которого позволяет воспринимать световое излучение.

Ресницы и веки осуществляют защитную функцию. К вспомогательным органам относятся и слезные железы. Слезная жидкость нужна для согревания, увлажнения и очистки поверхности глаз.

Основные структуры

Глазное яблоко – это орган сложной структуры. Внутренние среды глаза окружают три оболочки: наружная (фиброзная), средняя (сосудистая) и внутренняя (сетчатая). Наружная оболочка по большей части состоит из белковой непрозрачной ткани (склера). В своей передней части склера переходит в роговицу: прозрачную часть наружной оболочки глаза. Через роговицу в глазное яблоко попадает световое излучение. Роговица необходима и для преломления световых лучей.

Роговица и склера достаточно прочны. Это позволяет им поддерживать внутриглазное давление и сохранять форму глаза.

Средняя оболочка глаза это:

  • Радужная оболочка;
  • Сосудистая оболочка;
  • Ресничное (цилиарное) тело.

Радужная оболочка состоит из рыхлой соединительной ткани и сети сосудов. В ее центре расположен зрачок – отверстие, имеющее устройство диафрагмы. Таким образом он может регулировать количество света, поступающее в глаз. Край радужной оболочки переходит в ресничное тело, покрытое склерой. Кольцевидное ресничное тело состоит из ресничной мышцы, сосудов, соединительной ткани и отростков ресничного тела. К отросткам крепится хрусталик. Функциями ресничного тела являются процесс аккомодации и выработка . Это жидкость питает некоторые части глаза и поддерживает постоянное внутриглазное давление.

В нем же образуются вещества, необходимые для обеспечения процесса зрения. В следующем слое сетчатки расположены отростки, носящие название палочек и колбочек. Посредством отростков нервное возбуждение, обеспечивающее зрительное восприятие, передается в зрительный нерв. Активная часть сетчатки называется глазное дно, которое содержит сосуды, и желтое пятно, где находится большая часть отростков-колбочек, отвечающих за цветовое зрение.

Форма палочек и колбочек

Внутри глазного яблока находятся:

  • Внутриглазная жидкость;
  • Стекловидное тело.

Заднюю поверхность век и переднюю часть глазного яблока поверх склеры (до роговицы) покрывает конъюнктива. Это слизистая оболочка глаза, которая выглядит как тонкая прозрачная плёнка.

Строениние передней части глазного яблока и слезного аппарата

Оптическая система

В зависимости от функций, выполняемых различными частями органов зрения, можно выделить светопроводящий и световоспринимающий отделы глаза. Световоспринимающий отдел – это сетчатка. Изображение воспринимаемых глазом объектов воспроизводится на сетчатке с помощью оптической системы глаза (светопроводящего отдела), которая состоит из прозрачной среды глаза: стекловидного тела, влаги передней камеры и хрусталика. Но главным образом преломление света происходит на внешней поверхности глаза: роговице и в хрусталике.

Оптическая система глаза

Лучи света проходят через эти преломляющие поверхности. Каждая их них отклоняет световой луч. В фокусе оптической системы глаза изображение проявляется как его перевернутая копия.

Процесс преломления света в оптической системе глаза обозначается термином «рефракция». Оптическая ось глаза – это прямая, которая проходит через центр всех преломляющих поверхностей. Световые лучи, исходящие от бесконечно удаленных предметов, параллельны этой прямой. Преломление в оптической системе глаза собирает их в основном фокусе системы. То есть главный фокус является тем местом, в котором проецируются бесконечно удаленные объекты. От предметов, которые находятся на конечном расстоянии, лучи, преломляясь, собираются в дополнительных фокусах. Дополнительные фокусы находятся дальше, чем основной.

При исследованиях функционирования глаза обычно принимаются во внимание следующие параметры:

  • Преломляющая , или рефракция;
  • Радиус кривизны роговицы;
  • Показатель преломления стекловидного тела.

Также это радиус кривизны поверхности сетчатки.

Возрастное развитие глаза и его оптической силы

После рождения человека его органы зрения продолжают формироваться. В первые шесть месяцев жизни формируется область желтого пятна и центральная область сетчатки. Также увеличивается функциональная мобильность зрительных путей. В продолжение первых четырех месяцев происходит морфологическое и функциональное развитие черепных нервов. До двухлетнего возраста продолжается совершенствование корковых зрительных центров, а также зрительных клеточных элементов коры. В первые годы жизни ребенка происходит формирование и укрепление связей зрительного анализатора с другими анализаторами. Развитие органов зрения человека завершаются к трем годам.

Световая чувствительность у ребенка появляется сразу после рождения, но зрительный образ еще не может появиться. Достаточно быстро (в течение трех недель) у малыша развиваются условно-рефлекторные связи, которые приводят к совершенствованию функций пространственного, предметного и .

Центральное зрение развивается у человека только на третьем месяце жизни. В последующем происходит его совершенствование.

Острота зрения новорожденного очень низкая. К второму году жизни она повышается до 0,2–0,3. К семи годам развивается до 0,8–1,0.

Способность к восприятию цвета появляется в возрасте от двух до шести месяцев. В пять лет цветовое зрение у детей вполне развито, хотя и продолжает совершенствоваться. Также постепенно (примерно к школьному возрасту) достигают нормального уровня границы поля зрения. Значительно позже других функций глаза развивается бинокулярное зрение.

Адаптация

Адаптацией называется процесс приспособления органов зрения к меняющемуся уровню освещенности окружающего пространства и объектов в нем. Различают процесс темновой адаптации (изменения чувствительности при переходе от яркого света в полную темноту) и световую адаптацию (при переходе от темноты к свету).

«Приспособление» глаза, который воспринимал яркий свет, к видению в темноте развивается неравномерно. Вначале чувствительность нарастает довольно быстро, а затем замедляется. Полное завершение процесса темновой адаптации может продолжаться несколько часов.

Световая адаптация занимает намного более короткий промежуток времени – примерно от одной до трех минут.

Аккомодация

Аккомодацией называется процесс «приспособления» глаза к четкому различению тех объектов, которые, располагаются в пространстве на разном расстоянии от воспринимающего. Механизм аккомодации связан с возможностью изменения кривизны поверхностей хрусталика, то есть изменения фокусного расстояния глаза. Это происходит при натяжении или расслаблении ресничного тела.

С возрастом способность органов зрения к аккомодации постепенно снижается. Развивается (возрастная дальнозоркость).

Острота зрения

Понятие «острота зрения» обозначает способность видеть раздельно точки, которые расположены в пространстве на некотором расстоянии друг от друга. Для того, чтобы измерить остроту зрения, используют понятие «угол зрения». Чем меньше угол зрения, тем выше острота зрения. Острота зрения считается одной из важнейших функций глаза.

Определение остроты зрения – это один из ключевых работы глаза.

Гигиена – это часть медицины, которая разрабатывает правила, важные для предупреждения болезней и укрепления здоровья различных органов и систем организма. Основным правилом, направленным на сохранение здоровья зрения является предупреждение переутомления глаз. Важно научиться снимать напряжение, использовать в случае необходимости методы коррекции зрения.

Также гигиена зрения предусматривает меры, предохраняющие глаза от загрязнения, травм, ожогов.

Гигиена

Оборудование рабочих мест – это часть мероприятий, позволяющих глазам нормально функционировать. Органы зрения наиболее хорошо «работают» в условиях, наиболее близких к природным. Неестественное освещение, невысокая подвижность глаз, сухой воздух в помещении могут приводить нарушениям зрения.

На здоровье глаз оказывает большое влияние качество питания.

Упражнения

Существует довольно большое количество упражнений, помогающих поддерживать хорошее зрение. Выбор зависит от состояния зрения человека, его возможностей, образа жизни. Лучше всего при выборе тех или иных видов гимнастики получить консультацию специалиста.

Простой комплекс упражнений, предназначенный для расслабления и тренировки:

  1. Интенсивно моргать в течение одной минуты;
  2. «Моргать» при закрытых глазах;
  3. Направить взгляд на определенную точку, расположенную далеко от человека. Смотреть вдаль в течение минуты;
  4. Перевести взгляд на кончик носа, смотреть на него десять секунд. Затем снова перевести взгляд вдаль, прикрыть глаза;
  5. Кончиками пальцев легко похлопывая, выполнять массаж бровей, висков и подглазничной области. После этого необходимо на одну минуту прикрыть глаза ладонью.

Упражнения необходимо выполнять один или два раза в день. Также важно использовать комплекс для отдыха от интенсивных зрительных нагрузок.

Видео

Выводы

Глаз - это сенсорный орган, который обеспечивает функцию зрения. Большая часть информации об окружающем мире (около 90 %) поступает к человеку именно посредством зрения. Уникальная оптическая система глаза позволяет получать четкое изображение, различать цвета, расстояния в пространстве, приспосабливаться к условиям изменения освещенности.

Глаза – это сложно устроенный и чувствительный орган. Его довольно , но и создавая неестественные условия функционирования. Для того чтобы сохранить здоровье глаз, необходимо соблюдать гигиенические рекомендации. В случае появления проблем со зрением или возникновения глазных заболеваний обращение за консультацией к специалисту необходимо. Это поможет человеку сохранить зрительные функции.

  • Сергей Савенков

    какой то “куцый” обзор… как будто спешили куда то